Legionnaire's Disease Cluster: Impact of Stream Microbial Ecology on Community Health

Perry Cohn, PhD MPH New Jersey Department of Health and Senior Services Division of Epidemiology, Environmental and Occupational Health

Presented December 2, 2011 NJ Water Monitoring Summit

Legionellosis

- Legionella bacteria, esp. L. pneumophila can cause pneumonia or flu-like Pontiac fever; mild cases rarely diagnosed
- Wide-spread in water environments
- Illness spread by breathing aerosols with Legionella growing in warm water: showers, outdoor fountains, chillers & cooling towers; not person-to-person
- Incubation time: 2-14 days after exposure

Legionellosis, cont.

- Reportable disease: 8-18 K U.S. cases/yr
- Primarily affects immunocompromised, elderly, alcoholics, smokers, and those with diabetes, kidney failure & COPD
- 95% diagnoses in patients hospitalized for pneumonia; urine antigen for Lp type 1
- Missed cases: 10-20% other species or serotypes; most Pontiac Fever cases due to different disease mechanism & severity

Legionellosis, cont.

- Best growth at 95-105° F (35-40° C)
- Killing requires ~160° F (~70° C)
- Water heaters set low need to be set higher; scalding risk addressed by mixing valve in bathroom
- In buildings: copper-silver ion generator or chlorine dioxide generator in addition to residual chlorine from treatment plant

Source of Legionella in the Water Environment

- Widespread in ambient surface waters, but streams & waterfalls not linked to outbreaks
- Complex ecology: both free and trapped in various amoeba species and/or biofilm (microorganisms embedded in their secretions on a surface)
- Higher incidence with heat, rain & humidity

Legionella and Water Treatment

- Vegetative amoebae and Legionella sensitive to chlorine, but more resistant than GI pathogens
- Amoebae can form hardy cysts which have high resistance to chlorine
- Trapped Legionella inside amoeba cysts and/or biofilm are also very resistant
- Some Legionella survive water treatment inside amoeba cysts: can be found in various treatment steps, e.g., filter beds

Controlling Legionella

- WHO supports 0.2 0.5 ppm free chlorine residual for hotels, hospitals and ships
- Works by inhibiting growth of Legionella and amoebae
- 1 2 ppm (or more) free chlorine residual can kill free Legionella and most amoebae
- 10 50 ppm free chlorine residual needed if Legionella is in biofilm or amoeba cyst
- Thermal treatment >60° C for 5 minutes

How to Grow Legionella in the Distribution System

- Provide warm water with nutrients
 - Streams typically 25 35° C in summer
- Use up the chlorine residual
 - React chlorine with increased organic material
 - Warm tanks in the summer, esp. with the same pipe in and out
 - Allow build-up of sediment in pipes, which also reacts with chlorine
- Do not disturb biofilm in water mains

Proving the Water Link

- Legionella not always present in water samples due to sporadic releases of biofilm from pipe and tank
- Fastidious in culture test, often requiring 5

 10 days or more, so clinical use of urine antigen test for L. pneumophila, serotype 1 (80-90% of hospitalized cases)

Investigation of a Case Cluster

- During 2003 2007 10 cases clustered around an elevated storage tank in system using water from a river
- Follow-up analysis spanned 2003 2010
- 17 cases, 16 were 50+ yr olds
- Cases spread through community, different types of housing
- Most cases in the late summer/early fall
- No ID'd chiller units as alternative routes

Investigation..., cont.

- Normal treatment plant operation
- Low residual chlorine <0.2 ppm during warm weather in 5 sites routinely tested in the investigation area, but total coliform & E. coli bacteria were not an issue
- Appropriate residual chlorine levels during warm weather in most of the rest of the distribution system

Investigation Area Sample Sites and Tank

Annual Occurrence Rates, 50 + year olds, 1/2003 - 9/2010

	Cases	Population, 50+ yrs old	Annual rate per 100,000
Water System Srvc Area	41	46,950	11
Investigation Area	16	43,282	56
Remainder of Srvc Area	25	3,668	7.5

Remediation Suggestions

- Clean mains by flushing or "pigging"
- Empty tank and remove biofilm
- 1-2 ppm residual chlorine during the first months
- Maintain at least 0.2 0.5 ppm afterward
- Increase chlorine residual test frequency and sites in the area during warm weather months in the first yrs of operation

Conclusions

- Controlling fecal pathogens is not sufficient for controlling pathogens sequestered in amoeba cysts and biofilm
- There are other respiratory pathogens that escape by similar mechanism
- Systems using surface water must manage their distribution systems knowing that higher temperatures and nutrient levels promote biofilm growth and depletion of chlorine residual

Acknowledgements

- Carol Genese, Legionella Coordinator
- Ellen Rudowski, Stella Tsai

New Jersey Department of Health and Senior Services Division of Epidemiology Environmental & Occupational Health